Introduction
COPA (Compiler and Prompt Optimization Algorithm) represents the cutting edge of DSPy optimization by combining two powerful techniques: fine-tuning and prompt optimization. While each technique individually provides significant improvements, COPA demonstrates that combining them creates synergistic effects that exceed additive improvements, often achieving 2-26x performance gains.
The Joint Optimization Problem
Traditional DSPy optimization operates at a single level: either you fine-tune model weights OR you optimize prompts. COPA treats this as a two-level parameter problem:
- Level 1 - Weights (W): Model parameters modified through fine-tuning.
- Level 2 - Prompts (P): Instructions and demonstrations optimized by DSPy.
# The joint optimization objective:
# argmax_{W, P} E[metric(program(W, P), examples)]
💻 Implementing COPA
A basic COPA implementation optimizes in two stages: first fine-tuning the base model, then applying prompt optimization.
class COPAOptimizer:
def optimize(self, program, trainset, valset, finetune_data=None):
"""
Two-stage optimization:
1. Fine-tune the base model
2. Apply prompt optimization to the fine-tuned model
"""
# Stage 1: Fine-tuning
print("Stage 1: Fine-tuning base model...")
finetuned_model = self._finetune(
trainset if finetune_data is None else finetune_data
)
# Configure DSPy to use fine-tuned model
finetuned_lm = self._create_dspy_lm(finetuned_model)
dspy.settings.configure(lm=finetuned_lm)
# Stage 2: Prompt optimization
print("Stage 2: Applying prompt optimization...")
if self.prompt_optimizer == "mipro":
optimizer = MIPRO(
metric=self.metric,
num_candidates=15,
auto="medium"
)
else:
optimizer = BootstrapFewShot(
metric=self.metric,
max_bootstrapped_demos=8
)
compiled_program = optimizer.compile(
program,
trainset=trainset,
valset=valset
)
return compiled_program, finetuned_model
Monte Carlo Methods
COPA can use Monte Carlo methods to efficiently explore the vast space of possible prompt configurations.
class MonteCarloPromptExplorer:
def explore(self, program, prompt_templates, demo_pool, metric, trainset):
results = []
for _ in range(self.num_samples):
# Sample instruction and demonstrations
instruction = np.random.choice(prompt_templates)
demos = np.random.choice(demo_pool, size=num_demos, replace=False)
# Configure and evaluate
config = {"instruction": instruction, "demonstrations": demos}
score = self._evaluate_config(program, config, metric, trainset)
results.append({"config": config, "score": score})
return max(results, key=lambda x: x["score"])
Bayesian Optimization
For even more efficiency, Bayesian optimization uses a Gaussian Process surrogate model to intelligently search the prompt configuration space.
# Bayesian optimization loop
for iteration in range(n_iterations):
# Fit surrogate model
surrogate = self._fit_surrogate()
# Find next point using acquisition function (e.g., Expected Improvement)
next_config = self._maximize_acquisition(surrogate, prompt_space)
# Evaluate and update observations
score = self._evaluate(program, next_config, metric, valset)
self.observed_configs.append(next_config)
self.observed_scores.append(score)
🚀 Performance Benchmarks
Combining fine-tuning and prompt optimization yields impressive results:
| Model | Baseline | Fine-Tuning Only | Prompt Opt Only | COPA | Improvement |
|---|---|---|---|---|---|
| Llama-7B | 12.3% | 28.5% | 19.7% | 45.2% | 3.7x |
| Mistral-7B | 18.7% | 35.2% | 31.4% | 62.8% | 3.4x |