Introduction
Debugging AI applications is tricky due to non-deterministic outputs. This section covers how to inspect module state, trace execution flow, and monitor performance.
Common Debugging Challenges
- Non-deterministic Outputs: The same input might yield different results.
- Hidden Complexity: Logic within optimizers and LMs is often opaque.
- Token Usage: Costs can spiral without careful monitoring.
Building a DSPy Debugger
A custom debugger class can help log and inspect execution:
Python
class DSPyDebugger:
def trace(self, module, args, result):
log_entry = {
"module": module,
"args": args,
"result": result
}
self.history.append(log_entry)
self._print(log_entry)
Function Tracing with Decorators
Automatically trace forward passes in your modules:
Python
def trace_function(func):
def wrapper(*args, **kwargs):
print(f"Executing {func.__name__}...")
result = func(*args, **kwargs)
print(f"Result: {result}")
return result
return wrapper
class TracedModule(dspy.Module):
@trace_function
def forward(self, x):
return self.predict(input=x)
Token Usage & Cost Tracking
Monitor costs by tracking token usage:
Python
import tiktoken
class TokenTracker:
def count_tokens(self, text):
return len(self.encoding.encode(text))
def estimate_cost(self):
# Calculate based on current pricing...
pass