Problem Definition
A multinational corporation needs a unified solution to help employees quick-find information across thousands of internal documents, including policies, legal contracts, and product specs.
Key Requirements
- Accurate Retrieval: Precisions matters.
- Security: Respect document access permissions (ACLs).
- Scalability: Handle millions of documents.
- Multilingual: Content in 15+ languages.
System Design
The architecture consists of an ingestion pipeline (OCR, chunking), a hybrid retrieval system (Vector + Keyword), and a DSPy-powered generation layer.
Document Indexer
The indexer handles text extraction, language detection, and semantic chunking.
class DocumentIndexer(dspy.Module):
def forward(self, document: Dict) -> List[DocumentChunk]:
text = self._extract_text(document)
language = self._detect_language(text)
chunks = self._create_chunks(text, language)
return [DocumentChunk(content=c, language=language) for c in chunks]
Hybrid Retrieval
Combining vector search for semantics and keyword search for specific terms is crucial for enterprise accuracy.
class HybridRetriever(dspy.Module):
def forward(self, query):
vec_res = self._vector_search(query)
kw_res = self._keyword_search(query)
return self._combine_and_rerank(vec_res, kw_res)
RAG Generator
The generation module synthesizes answers and verifies them against the source context to minimize hallucinations.
class RAGGenerator(dspy.Module):
def __init__(self):
self.generate = dspy.Predict(GenerateAnswerSignature)
self.verify = dspy.ChainOfThought(VerifyAnswerSignature)
def forward(self, question, context):
ans = self.generate(question=question, context=context)
final = self.verify(answer=ans.answer, context=context)
return final